High-order epistasis shapes evolutionary trajectories
نویسندگان
چکیده
High-order epistasis-where the effect of a mutation is determined by interactions with two or more other mutations-makes small, but detectable, contributions to genotype-fitness maps. While epistasis between pairs of mutations is known to be an important determinant of evolutionary trajectories, the evolutionary consequences of high-order epistasis remain poorly understood. To determine the effect of high-order epistasis on evolutionary trajectories, we computationally removed high-order epistasis from experimental genotype-fitness maps containing all binary combinations of five mutations. We then compared trajectories through maps both with and without high-order epistasis. We found that high-order epistasis strongly shapes the accessibility and probability of evolutionary trajectories. A closer analysis revealed that the magnitude of epistasis, not its order, predicts is effects on evolutionary trajectories. We further find that high-order epistasis makes it impossible to predict evolutionary trajectories from the individual and paired effects of mutations. We therefore conclude that high-order epistasis profoundly shapes evolutionary trajectories through genotype-fitness maps.
منابع مشابه
Perspective: Sign epistasis and genetic constraint on evolutionary trajectories.
Epistasis for fitness means that the selective effect of a mutation is conditional on the genetic background in which it appears. Although epistasis is widely observed in nature, our understanding of its consequences for evolution by natural selection remains incomplete. In particular, much attention focuses only on its influence on the instantaneous rate of changes in frequency of selected all...
متن کاملThe diversity of evolutionary dynamics on epistatic versus non-epistatic fitness landscapes
Although the role of epistasis in evolution has received considerable attention from experimentalists and theorists alike, it is unknown which aspects of adaptation are in fact sensitive to epistasis. Here, we address this question by comparing the evolutionary dynamics on all finite epistatic landscapes versus all finite non-epistatic landscapes, under weak mutation. We first analyze the fitne...
متن کاملSign Epistasis and the Geometry of Interactions
Approaches to gene interactions based on sign epistasis have been highly influential in recent time. Sign epistasis is useful for relating local and global properties of fitness landscapes, as well as for analyzing evolutionary trajectories and constraints. The geometric theory of gene interactions, on the other hand, provides complete information on interactions in terms of minimal dependence ...
متن کاملEpistasis Constrains Mutational Pathways of Hemoglobin Adaptation in High-Altitude Pikas
A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and epistasis in shaping trajectories of protein evolution. This question can be addressed most directly by using site-directed mutagenesis to explore the mutational landscape of protein function in experimentally defined regions of sequence space. Here, we evaluate how pleiotropic trade-offs and epistat...
متن کاملPredicting C4 Photosynthesis Evolution: Modular, Individually Adaptive Steps on a Mount Fuji Fitness Landscape
An ultimate goal of evolutionary biology is the prediction and experimental verification of adaptive trajectories on macroevolutionary timescales. This aim has rarely been achieved for complex biological systems, as models usually lack clear correlates of organismal fitness. Here, we simulate the fitness landscape connecting two carbon fixation systems: C3 photosynthesis, used by most plant spe...
متن کامل